第二二一章 四色
推荐阅读:深空彼岸、明克街13号、夜的命名术、最强战神、全职艺术家、龙王殿、重生之都市仙尊、财运天降、花娇、好想住你隔壁
一秒记住【笔下文学 www.bbxwx.com】,精彩小说无弹窗免费阅读!
迄今为止,提到“四色定理”,还无法用人类已掌握的数学来证明。
但这是否就意味着,人类需要接受计算机给出的,并非显明、仅仅是有限穷举而得到的所谓证明呢,这就是一个见仁见智的问题。
与数学界的诸多高深学问不同,四色定理,寻常人也一眼就能看懂,即便其背后蕴含的数学原则想必极为高深,却并不妨碍人类经由观察、思考,再加上一点人所特有的直觉洞察,主观上倾向于认为“这一猜想是正确的”。
即便如此,对计算机的有限穷举,算不算是严格的证明了四色定理呢;
方然对此持谨慎的否定态度。
之所以持否定态度,并非是说,在他眼中计算机的一切证明、推演,都毫无价值,而是在像“四色定理”这样的问题上,暴力验证手段,要面对的目标空间是无穷大,这时穷举法事实上已经失效,不论是人用纸和笔,还是计算机用逻辑电路与电磁波来进行,都不会改变这一原则性的事实。
在面对此类问题时,迄今为止,计算机并不被认为有这样一种能力:
超越人类的分析、洞察与推理,独立解决这些人力所不能及的自然科学领域之难题。
换句话说,按IT领域的一句公理,至少到目前为止还是不容置疑的总结,“人做不到的事,计算机同样做不到”。
这里的“能”与“不能”,是在不考虑时间、资源等因素的前提下,进行的判断。
就是对任何一个命题,倘若人,人类,人类文明,始终维持当前的认识水平,即便花费再长时间也无法解决,那么对计算机而言,即便同样有无限长的时间可用,这命题也注定会是无法解决的。
演绎到数学领域,原则上,只要是人证不出来的命题,计算机也一定证不出来。
这一判断,不仅在IT领域,在自然科学领域也是一种共识,直到今天,也没有明确的迹象表示,计算机能够突破这样的限制,具备超越人脑的智慧。
至于当下的人工智能,看名称,仿佛就是计算机也能因此而具有智慧,实质却是在架构层面的一种模仿,试图利用算法、乃至硬件来模拟人类大脑的神经元活动,从而具备此前为人所独有的学习、记忆、联想乃至推断能力。
指导思想大抵如此,具体到每一种实现策略,不论神经网络、还是深度学习,效果在本质上也都是相近的。
与人类的大脑相比,目前的AI体系,不论是在软件层面的算法和架构,还是在硬件层面的逻辑电路、存储器件,具有远超人脑的数值计算能力和数值存储空间,然而,却一直没有实现远超人类的意识和思维能力。
而“国际商用机器”在夏洛特的研发中心,负责人工智能方向的AIG1~5都主攻这一领域,在方然的AIG4,“阿尔法”组的主要方向是新架构,即在不改变现有硬件基础——数字逻辑电路的条件下,提出创造性的新架构,试图创造出能力更加强大的人工智能,或者,让现有人工智能的算力需求大幅下降。
与前沿探索的“阿尔法”组不同,“贝塔”组的方向,则更加现实,专注于现有人工智能体系的调整、优化,在应用平台上混合AI与传统逻辑模块,提升系统的实际性能。
作为新手,一开始在“贝塔”组工作,这是很自然的安排。
夏洛特的信息基础研发中心里,有若干AIG这样的组,之前面试过方然的肯*汤普森则是中心的项目负责人之一,也是五个AIG小组的总管,但他想必很忙,来到夏洛特中心很多天,方然都没在见过他本人。
除非是开讨论会,他倒是通过投影屏幕见过两三次,毕竟也和现场不一样。
目标明确,小组里负责带新人的工程师也挺友善,认识到自己要展现能力、显露才华,才能如愿以偿的留在研发中心,方然很投入,和小组中资历更老的其他员工不一样,他每天都会准时去工作室,下班时间后,还会在住处的电脑前继续忙碌。
天资平平,眼前一切全凭实打实的努力,方然清楚自己的斤两。
不过这样的投入度,也不全是受眼前目标的驱使:在动身前几乎刺探、评估过夏洛特研发中心的一切,对于“努力到什么程度才能留在IBM”,方然很有把握。
对人工智能,具体的讲,对未来的人工智能,究竟会发展到一个什么样的程度,他的确很感兴趣,既然工作需要,索性就全身心的投入其中,先尝试解决内心早已有之、却始终没有解答的困惑:
正如四色定理的证明,原则上,并不能作为计算机超越了人的证据;
他想知道,计算机、人工智能、自动化体系的能力上限,究竟在哪里,人的智慧、思维、能力,会不会是这一切新生事物的天花板。
人无法解决的问题,原则上,计算机更无法解决。
直到不久之前,不,直到坐在电脑前思考的这一刻,方然都清楚的知道,这句话还是工程界、计算机界乃至自然科学界的共识。
未来尚未可知,眼前的情形却不容置疑,迄今为止,人类所创造的一切计算机、智能系统与自动化体系,虽然在很多领域都具有令人望尘莫及的强大力量,也在诸如实时翻译、自动驾驶和棋类对弈等领域呈现出碾压性的优势,但是在逻辑推导、思维推断的层面,却根本没有取得任何实质性的突破。
直到今天,任何一个数学猜想,仍然需要由人来证实、或者证伪;
倘若某些猜想,可以被计算机严密的证明、或者证伪,那必定是人的智慧在幕后操纵,计算机,则只是用来节约时间、节约生命的有力工具。
现实情形如此,但,未来又会如何;
智慧,逻辑思维,分析、理解、洞察,这一切为人所垄断的时间,还有多久……
每天工作到深夜,十一点准时离开电脑、洗漱就寝,方然的脑海差不多被模型、架构和分析测试所充斥,但稍有闲暇时,他还是会被脑海中萦绕的念头所吸引。
迄今为止,提到“四色定理”,还无法用人类已掌握的数学来证明。
但这是否就意味着,人类需要接受计算机给出的,并非显明、仅仅是有限穷举而得到的所谓证明呢,这就是一个见仁见智的问题。
与数学界的诸多高深学问不同,四色定理,寻常人也一眼就能看懂,即便其背后蕴含的数学原则想必极为高深,却并不妨碍人类经由观察、思考,再加上一点人所特有的直觉洞察,主观上倾向于认为“这一猜想是正确的”。
即便如此,对计算机的有限穷举,算不算是严格的证明了四色定理呢;
方然对此持谨慎的否定态度。
之所以持否定态度,并非是说,在他眼中计算机的一切证明、推演,都毫无价值,而是在像“四色定理”这样的问题上,暴力验证手段,要面对的目标空间是无穷大,这时穷举法事实上已经失效,不论是人用纸和笔,还是计算机用逻辑电路与电磁波来进行,都不会改变这一原则性的事实。
在面对此类问题时,迄今为止,计算机并不被认为有这样一种能力:
超越人类的分析、洞察与推理,独立解决这些人力所不能及的自然科学领域之难题。
换句话说,按IT领域的一句公理,至少到目前为止还是不容置疑的总结,“人做不到的事,计算机同样做不到”。
这里的“能”与“不能”,是在不考虑时间、资源等因素的前提下,进行的判断。
就是对任何一个命题,倘若人,人类,人类文明,始终维持当前的认识水平,即便花费再长时间也无法解决,那么对计算机而言,即便同样有无限长的时间可用,这命题也注定会是无法解决的。
演绎到数学领域,原则上,只要是人证不出来的命题,计算机也一定证不出来。
这一判断,不仅在IT领域,在自然科学领域也是一种共识,直到今天,也没有明确的迹象表示,计算机能够突破这样的限制,具备超越人脑的智慧。
至于当下的人工智能,看名称,仿佛就是计算机也能因此而具有智慧,实质却是在架构层面的一种模仿,试图利用算法、乃至硬件来模拟人类大脑的神经元活动,从而具备此前为人所独有的学习、记忆、联想乃至推断能力。
指导思想大抵如此,具体到每一种实现策略,不论神经网络、还是深度学习,效果在本质上也都是相近的。
与人类的大脑相比,目前的AI体系,不论是在软件层面的算法和架构,还是在硬件层面的逻辑电路、存储器件,具有远超人脑的数值计算能力和数值存储空间,然而,却一直没有实现远超人类的意识和思维能力。
而“国际商用机器”在夏洛特的研发中心,负责人工智能方向的AIG1~5都主攻这一领域,在方然的AIG4,“阿尔法”组的主要方向是新架构,即在不改变现有硬件基础——数字逻辑电路的条件下,提出创造性的新架构,试图创造出能力更加强大的人工智能,或者,让现有人工智能的算力需求大幅下降。
与前沿探索的“阿尔法”组不同,“贝塔”组的方向,则更加现实,专注于现有人工智能体系的调整、优化,在应用平台上混合AI与传统逻辑模块,提升系统的实际性能。
作为新手,一开始在“贝塔”组工作,这是很自然的安排。
夏洛特的信息基础研发中心里,有若干AIG这样的组,之前面试过方然的肯*汤普森则是中心的项目负责人之一,也是五个AIG小组的总管,但他想必很忙,来到夏洛特中心很多天,方然都没在见过他本人。
除非是开讨论会,他倒是通过投影屏幕见过两三次,毕竟也和现场不一样。
目标明确,小组里负责带新人的工程师也挺友善,认识到自己要展现能力、显露才华,才能如愿以偿的留在研发中心,方然很投入,和小组中资历更老的其他员工不一样,他每天都会准时去工作室,下班时间后,还会在住处的电脑前继续忙碌。
天资平平,眼前一切全凭实打实的努力,方然清楚自己的斤两。
不过这样的投入度,也不全是受眼前目标的驱使:在动身前几乎刺探、评估过夏洛特研发中心的一切,对于“努力到什么程度才能留在IBM”,方然很有把握。
对人工智能,具体的讲,对未来的人工智能,究竟会发展到一个什么样的程度,他的确很感兴趣,既然工作需要,索性就全身心的投入其中,先尝试解决内心早已有之、却始终没有解答的困惑:
正如四色定理的证明,原则上,并不能作为计算机超越了人的证据;
他想知道,计算机、人工智能、自动化体系的能力上限,究竟在哪里,人的智慧、思维、能力,会不会是这一切新生事物的天花板。
人无法解决的问题,原则上,计算机更无法解决。
直到不久之前,不,直到坐在电脑前思考的这一刻,方然都清楚的知道,这句话还是工程界、计算机界乃至自然科学界的共识。
未来尚未可知,眼前的情形却不容置疑,迄今为止,人类所创造的一切计算机、智能系统与自动化体系,虽然在很多领域都具有令人望尘莫及的强大力量,也在诸如实时翻译、自动驾驶和棋类对弈等领域呈现出碾压性的优势,但是在逻辑推导、思维推断的层面,却根本没有取得任何实质性的突破。
直到今天,任何一个数学猜想,仍然需要由人来证实、或者证伪;
倘若某些猜想,可以被计算机严密的证明、或者证伪,那必定是人的智慧在幕后操纵,计算机,则只是用来节约时间、节约生命的有力工具。
现实情形如此,但,未来又会如何;
智慧,逻辑思维,分析、理解、洞察,这一切为人所垄断的时间,还有多久……
每天工作到深夜,十一点准时离开电脑、洗漱就寝,方然的脑海差不多被模型、架构和分析测试所充斥,但稍有闲暇时,他还是会被脑海中萦绕的念头所吸引。